First Code Improvement Report for the
Land Information System
Submitted under Task Agreement GSFC-CT-2
Cooperative Agreement Notice (CAN)
CAN-000ES-01
Increasing Interoperability and Performance of
Grand Challenge
Applications in the Earth, Space, Life, and
Microgravity Sciences

Version 1.0

History:
Revision | Summary of Changes | Date
1.0 Draft 04/01/03

Code Improvement Report for Milestone F

Contents
(1 Description of the Milestone| 4
2 Description of Algorithms| 4
[2.1 Land Surface Modeling and Data Assimilation 4
2 [ISdriverd 4
2.3 Community Land Model (CLM)| 7
[2.4 The Community NOAH Land Surface Model 7
[2.5 Code Improvements and Parallelization in LIS} 8
[3 Description of the Test Case] 9
[4 Description of the Computer Code Used| 10
4.1 Documentation of the Computer Code| 11
4.2 Code Repository] 11
6 Results| 11
.1 Results at 1/4° domain| L 11
[>.1.1 Profiling Results] 11
[5.1.2 Execution Times and Scalingl 12
[>.1.3 Memory Usagel 13
62 Resultsat Bkml 16
[>.2.1 Execution Times and Scaling| 16
[5.2.2 Memory and Disk Storagelo 17
6__Final Remarks| 17
List of Figures
I Flowchart for LIS driver] 6
2 Parallelization Scheme i LIS 10
3 Total times for computationally intensive functions on Lomax (from |
| Milestone E)|. 12
{4 Total times tor computationally intensive functions on Lomax] 13
(5 Percentage of total times for computationally intensive functions on |
[Lomax| 13
6 Timing Results on Lomax at 1/4° 14
7 Timing Results on Chapman 1/4° 14
(8 Comparison of Timing Results on Lomax and Chapman| 15

Code Improvement Report for Milestone F

[9 Timing Results on Lomax at bkm| 17

List of Tables

[l Measure of computational intensity for LIS driver at 1/4° (ms/gridcell /day)| 15
[2 Memory Usage for various LIS driver runs| 16
3 Measure of computational intensity for LIS driver at 5km (ms/gridcell /day)| 16

Code Improvement Report for Milestone F

1 Description of the Milestone

The milestone for the Land Information System (LIS) [5] code baseline deals with
the implementation and execution of the Community Land Model (CLM) [2] and
the National Oceanic and Atmospheric Administration’s NOAH (National Center
for Environmental Prediction, Oregon State University, United States Air Force,
and Office of Hydrology) [6] land surface model (LSM) within the LIS driver at
5km resolution on the ESS Testbed for the near-term retrospective period running
at approximately 1ms/gridcell/day. The milestone also requires publishing an initial
version of documented source code made publicly available via the Web. The expected
completion date is March 2003.

2 Description of Algorithms

This section provides an overall description of the land surface modeling and data as-
similation, followed by a description of the algorithms for each individual components
of LIS involved in this code improvement study.

2.1 Land Surface Modeling and Data Assimilation

In general, land surface modeling seeks to predict the terrestrial water, energy and
biogeochemical processes by solving the governing equations of the soil-vegetation-
snowpack medium. Land surface data assimilation seeks to synthesize data and land
surface models to improve our ability to predict and understand these processes. The
ability to predict terrestrial water, energy and biogeochemical processes is critical
for applications in weather and climate prediction, agricultural forecasting, water
resources management, hazard mitigation and mobility assessment.

In order to predict water, energy and biogeochemical processes using (typically
1-D vertical) partial differential equations, land surface models require three types
of inputs: 1) initial conditions, which describe the initial state of land surface; 2)
boundary conditions, which describe both the upper (atmospheric) fluxes or states
also known as “forcings” and the lower (soil) fluxes or states; and 3) parameters,
which are a function of soil, vegetation, topography, etc., and are used to solve the
governing equations.

2.2 LIS driver

The main driver in LIS is derived from the Land Data Assimilation System (LDAS) [5]).
LDAS is a model control and input/output system (consisting of a number of sub-

Code Improvement Report for Milestone F

routines, modules written in Fortran 90 source code) that drives multiple offline one
dimensional land surface models (LSMs) using a vegetation defined "tile” or ”patch”
approach to simulate sub-grid scale variability. The one-dimensional LSMs such as
CLM and NOAH, which are subroutines of LDAS, apply the governing equations of
the physical processes of the soil-vegetation-snowpack medium. These land surface
models aim to characterize the transfer of mass, energy, and momentum between a
vegetated surface and the atmosphere.

LDAS makes use of various satellite and ground based observation systems within
a land data assimilation framework to produce optimal output fields of land surface
states and fluxes. The LSM predictions are greatly improved through the use of a
data assimilation environment such as the one provided by LDAS. In addition to be-
ing forced with real time output from numerical prediction models and satellite and
radar precipitation measurements, LDAS derives model parameters from existing to-
pography, vegetation and soil coverages. The model results are aggregated to various
temporal and spatial scales, e.g., 3 hourly, 1/4°. The LDAS driver was used in the
baselining results presented for Milestone E. The LIS driver used for demonstrating
code improvements for Milestone H was developed by adopting the core LDAS driver
and implementing code improvements for enhancing performance. The structure of
LDAS driver was also redesigned using object oriented principles, providing adaptable
interfaces for ease of code development and extensibility. For a detailed description
of the redesign and code improvements, please refer to the interoperability document.

Figure [I| shows the algorithmic steps involved in the LIS driver. The execution of
LIS driver starts with reading in the user specifications. The user selects the model
domain and spatial resolution, the duration and timestep of the run, the land surface
model, the type of forcing from a list of model and observation based data sources,
the number of “tiles” per grid square (described below), the soil parameterization
scheme, reading and writing of restart files, output specifications, and the functioning
of several other enhancements including elevation correction and data assimilation.

The system then reads the vegetation information and assigns subgrid tiles on
which to run the one-dimensional simulations. LIS driver runs its 1-D land models
on vegetation-based “tiles” to simulate variability below the scale of the model grid
squares. A tile is not tied to a specific location within the grid square. Each tile
represents the area covered by a given vegetation type.

Memory is dynamically allocated to the global variables, many of which exist
within Fortran 90 modules. The model parameters are read and computed next. The
time loop begins and forcing data is read, time/space interpolation is computed and
modified as necessary. Forcing data is used to specify boundary conditions to the
land surface model. The LSMs in the LIS driver are driven by atmospheric forcing
data such as precipitation, radiation, wind speed, temperature, humidity, etc., from
various sources. LIS driver applies spatial interpolation to convert forcing data to

Code Improvement Report for Milestone F

Modeling Starts

Get configuration

il

Set up model
parameters

Initialize output
arrays and analysis

'

Get base, precipitation,
radiation forcing

i

Apply spatial and temporal
interpolation

Apply elevation
correction to forcing

i

Transfer forcing
to model tiles

!

Read model specific
data: LAI, albedo

'

Call CLM/NOAH

Finishall | No
tiles?

Yes
Write daily restarts

Return surface
fields to atmos. models

End Time| No

Modeling ends

Figure 1: Flowchart for LIS driver

the appropriate resolution required by the model. Since the forcing data is read in

Code Improvement Report for Milestone F

at certain regular intervals, LIS driver also temporally interpolates time average or
instantaneous data to that needed by the model at the current timestep. The selected
model is run for a vector of “tiles”, intermediate information is stored in modular
arrays, and output and restart files are written at the specified output interval.

2.3 Community Land Model (CLM)

CLM is a 1-D land surface model, written in Fortran 90, developed by a grass-roots
collaboration of scientists who have an interest in making a general land model avail-
able for public use. LIS currently uses CLM version 2.0, which was released in May
2002. The source code for CLM 2.0 is freely available from the National Center
for Atmospheric Research (NCAR) (http://www.cgd.ucar.edu/tss/clm/). CLM
is used as the land model for the community climate system model (CCSM) (http:
//www.ccsm.ucar.edu/) and the community atmosphere model (CAM) (http://
www.cgd.ucar.edu/cms/)). CLM is executed with all forcing, parameters, dimension-
ing, output routines, and coupling performed by an external driver of the user’s design
(in this case done by LIS driver). CLM requires pre-processed data such as the land
surface type, soil and vegetation parameters, model initialization, and atmospheric
boundary conditions as input. The model applies finite-difference spatial discretiza-
tion methods and a fully implicit time-integration scheme to numerically integrate
the governing equations. The model subroutines apply the governing equations of
the physical processes of the soil-vegetation-snowpack medium, including the surface
energy balance equation, Richards’ [7] equation for soil hydraulics, the diffusion equa-
tion for soil heat transfer, the energy-mass balance equation for the snowpack, and
the Collatz et al. [3] formulation for the conductance of canopy transpiration.

2.4 The Community NOAH Land Surface Model

The community NOAH Land Surface Model is a stand-alone, uncoupled, 1-D col-
umn model freely available at the National Centers for Environmental Prediction
(NCEP; ftp://ftp.ncep.noaa.gov/pub/gcp/ldas/noahlsm/). NOAH can be exe-
cuted in either coupled or uncoupled mode. It has been coupled with the operational
NCEP mesoscale Eta model [I] and its companion Eta Data Assimilation System
(EDAS) [8], and the NCEP global Medium-Range Forecast model (MRF) and its
companion Global Data Assimilation System (GDAS). When NOAH is executed in
uncoupled mode, near-surface atmospheric forcing data (e.g., precipitation, radia-
tion, wind speed, temperature, humidity) is required as input. NOAH simulates
soil moisture (both liquid and frozen), soil temperature, skin temperature, snowpack
depth, snowpack water equivalent, canopy water content, and the energy flux and
water flux terms of the surface energy balance and surface water balance. The model

http://www.cgd.ucar.edu/tss/clm/
http://www.ccsm.ucar.edu/
http://www.ccsm.ucar.edu/
http://www.cgd.ucar.edu/cms/
http://www.cgd.ucar.edu/cms/
ftp://ftp.ncep.noaa.gov/pub/gcp/ldas/noahlsm/

Code Improvement Report for Milestone F

applies finite-difference spatial discretization methods and a Crank-Nicholson time-
integration scheme to numerically integrate the governing equations of the physical
processes of the soil vegetation-snowpack medium, including the surface energy bal-
ance equation, Richards’ [7] equation for soil hydraulics, the diffusion equation for soil
heat transfer, the energy-mass balance equation for the snowpack, and the Jarvis [4]
equation for the conductance of canopy transpiration.

2.5 Code Improvements and Parallelization in LIS

Our profiling results from Milestone E demonstrated the functions that are most
time-consuming, thereby identifying the portions of our code-set that require our im-
mediate attention. These functions were mainly the spatial interpolation, temporal
interpolation, and the land surface model runs. The code improvements for Mile-
stone F concentrated on improving the performance of these functions. For spatial
interpolation, our code employs an external library called ipolates from NCEP. The
source code of this library’s routines were rewritten to improve their performance.
The time interpolation and the land surface model runs were parallelized using the
scheme described below.

Most of the community LSMs and the LDAS were not originally designed with
an intent to be run at such high resolutions such as 5km. As a result, the internal
data structures in these models and driver consisted of large data structures leading
to considerable memory requirements at bkm. For example, a “NOAH” tile will be
defined for every point in the tilespace. The amount of memory required for the
whole NOAH data structure will scale linearly with increase in grid points, leading
to unmanageable memory requirements.

Our original estimates of memory from the baselining results predicts approxi-
mately 50GB and 90GB of memory for NOAH and CLM runs approximately. Our
baselining code used an older version of CLM (Version 1.0). CLM version 2.0 is signif-
icantly more complex than version 1.0 in its functionality. For example, CLM version
1.0’s and 2.0’s main data structures contain approximately 450 and 550 variables,
respectively. CLM version 2.0 contains a number of additional functionalities such as
capability for coupling with atmosphere models, modules for river routing, volatile
organic compounds emissions, Dust mobilization analysis, etc. CLM2.0 includes ex-
tensive changes in surface datasets such as Leaf Area Index(LAI), Stem Area Index
(SAI), canopy heights, percent clay and percent sand. CLM1.0 uses a single LAI
value varying between a prescribed max/min value determined by soil temperature,
whereas CLM2.0 uses a geographically and temporally varying value. In terms of the
land surface physics, CLM2.0 includes calculation of orbital parameters and the plant
functional types determine the vegetation parameters, in addition to the sub-models
described above.

Code Improvement Report for Milestone F

The entire code was redesigned, with an emphasis on reducing the size of the main
data structures. The constructs in the LIS driver and the land surface model were
significantly modified, including the vectorization scheme mentioned below, leading
to considerable memory savings.

The global land surface is modeled by dividing it into two-dimensional regions or
cells (e.g. cells of size 1km x 1km, which would lead to approximately 50,000 times
more grid points than that of a simulation with cells of size 2° x 2.5°). Each cell
can have a partial spatial coverage by a number of vegetation types, as well as bare
soil. The vegetation characteristics such as leaf area index, stomatal resistance, etc.
might be time varying. The conditions in each cell (energy, water fluxes, etc.) are
computed at different time intervals. Each cell is driven by different atmospheric
forcing variables. Assuming approximately 0.4 milliseconds for each LSM run on a
particular cell, it can be estimated that modeling land surface processes over a year
with 15 minute timesteps would require approximately 74 years of runtime. This
problem is clearly a grand challenge simply from computational perspective.

Land surface processes have rather weak horizontal coupling on short time and
large space scales, which enables efficient scaling across massively parallel computa-
tional resources. LIS driver takes advantage of this weak horizontal coupling of land
surface processes in the parallelization scheme described below.

Figure [2| shows the parallelization scheme employed in LIS. The program starts
by initializing the global grid and associated parameters. Since land surface modeling
is conducted only on the land points, the program switches to a vectorized represen-
tation of grid, which in turn leads to significant memory savings. For example, at
5km resolution, the number of grid points is approximately 21 million. By using a
vectorized grid representation, we conduct model runs on only approximately 6 mil-
lion points. A dynamic domain decomposition based on the number of processors is
carried out on the vectorized grid. The master processor conducts the spatial inter-
polation. Temporal interpolation and land surface model runs are carried out on the
compute nodes based on their assigned subdomain. The master collects the variables
required for output, and the loop continues until the simulation is complete.

3 Description of the Test Case

The baselining results presented in this report were obtained by executing the LIS
driver on the following NASA AMES systems.

e LOMAX: SGI Origin 3000 IRIX64 6.5, 512 400MHz IP35 Processors
e CHAPMAN: SGI Origin 3000 IRIX64 6.5, 1024 600MHz IP35 Processors

Code Improvement Report for Milestone F

I \ T
BEEpSE e A E SR AN =NAREE
I - 4‘7‘ T =
| o 2
L_Tl } B } 2D GRID
B
{l O
e
! |
| |
Master processor ‘ 7 Vectorized
GRID
Processor 1 Processor 2 @ Processor N
Domain

Decomposition

Interpolation,
LSM runs

Output

No

Figure 2: Parallelization Scheme in LIS

The domain resolution was set to be b5km. There are 21,600,000 grid points at Skm
resolution. The CLM and NOAH LSMs were used in various runs. A timestep of 30
minutes was used in the runs. For simplicity, only one tile per grid was simulated in
the runs. The output files were written using binary format. The GEOS base forcing
was employed in the runs. The scalability of the code at different domain resolutions
was also examined.

4 Description of the Computer Code Used

This section provides an algorithmic description of the computer code used in the
baselining. LIS driver is a model control and input/output system (consisting of

10

Code Improvement Report for Milestone F

a number of subroutines, modules written in Fortran 90 source code) that drives
multiple offline one-dimensional LSMs using a vegetation defined “tile” or “patch”
approach to simulate subgrid scale variability. The one-dimensional LSMs, which are
subroutines of LIS driver, apply the governing equations of the physical processes of
the soil-vegetation-snowpack medium. These equations are model independent.

4.1 Documentation of the Computer Code

The documentation of the LIS driver and the land surface models (CLM 2.0 and
NOAH 2.5) can be accessed at http://1lis.gsfc.nasa.gov/Documentation/MilestoneF/
Documentation/index.html

4.2 Code Repository

The computer source code employed for this code improvement may obtained from
the LIS source code repository at http://1is2.sci.gsfc.nasa.gov:9090/Fcode/|.

5 Results

The LIS driver was run on different SGI Origin systems using GEOS forcing and
different land surface models. The simulated period of time considered for all the
runs in this study is 1 day. The computational demands of various runs are quantified
using four parameters: Total execution times, CPU times, disk usage, and memory
usage. We present the computational results obtained at 1/4° as well as at 5km for
comparison.

5.1 Results at 1/4° domain

The computational performance results of the improved code at 1/4° is presented in
this section for comparison with the baselining results presented for Milestone E.

5.1.1 Profiling Results

A dynamic runtime profiling, using SGI’s speedshop toolkit, was conducted to iden-
tify the computationally intensive segments of the improved code. This profiling was
conducted running the code on a single processor. Figures || and [5[shows the compu-
tational times and the percentage of total times, respectively, of the time consuming
functions. Figure|3|shows the corresponding profiling results from Milestone E. It can
be observed that the computational requirements of the spatial interpolation routines

11

http://lis.gsfc.nasa.gov/Documentation/MilestoneF/Documentation/index.html
http://lis.gsfc.nasa.gov/Documentation/MilestoneF/Documentation/index.html
http://lis2.sci.gsfc.nasa.gov:9090/Fcode/

Code Improvement Report for Milestone F

are significantly reduced from the baselining results of Milestone E. The time consum-
ing functions in the improved code is the time interpolation and land surface model
runs. The increase in the land surface model executions can be associated with the
added functionalities. It can also be observed that the computational requirements
of the CLM main driver is significantly more than that of NOAH.

1100 T T T

CLM =
 E—

1000 [~]

900 - n

800 - 7

Time (seconds)

700 - 7

600 n

500

ipolates time_interp Ism_main output

Figure 3: Total times for computationally intensive functions on Lomax (from Mile-
stone E)

5.1.2 Execution Times and Scaling

Figures |§| and m shows the scaling curves of the improved code at 1/4° for both Lomax
and Chapman. The code performs better than that of P/2 scaling for runs upto 16
processors. Figure [§| shows the comparison of runs on Chapman and Lomax. The
scaling behavior is similar on both platforms and code performs better on Chapman,
as expected.

Table [1| shows the computational intensity values for 1/4° runs on Chapman and
Lomax. The improved code performance for the sequential run is significantly better
than that of the baseline code. For example, on Lomax, the NOAH computational
intensity for the baseline code was approximately 4.4 and that of CLM was approxi-
mately 7.7. Even with the more complex CLM2 model, the improved code performs
much better than the baseline code.

12

Code Improvement Report for Milestone F

1800 T T T T T

CLM s
1600 =
1400 T
1200 -
1000 -

800 - 7

Time (seconds)

600 n

400 - n

202_ il M '1 _

maketiles ipolates time_interp Ism_main output

Figure 4: Total times for computationally intensive functions on Lomax

60 T T T T T
CLM I
—/

Percentage

Lol il L

maketiles ipolates time_interp Ism_main output

Figure 5: Percentage of total times for computationally intensive functions on Lomax

5.1.3 Memory Usage

The LIS driver code also requires significant memory for execution. The following
Table [2| lists the approximate memory requirements for runs with different land sur-

13

Code Improvement Report for Milestone F

3000 . . e . . —
NOAH —=—
CLM ——
: NOAH-P/2 Scaling -~~~
2500 F\ CLM-P/2 Scaling -~~~

2000

1500

Time (seconds)

1000

500

2000 . e e .
NOAH —=—

CLM —— |

NOAH-P/2 Scaling ----

CLM-P/2 Scaling ----
1600 N

1800 1

1400
1200
1000

800

Time (seconds)

600

400

200

Figure 7: Timing Results on Chapman 1/4°

face models. These numbers are obtained from the memory profiling conducted on
Chapman. The improved code demonstrates significant memory savings as expected
from our improvements described earlier.

14

Code Improvement Report for Milestone F

3000 ; ; _— ; ; —_—
NOAH-CHAPMAN —=—
NOAH-LOMAX —=—

2500 CLM-LOMAX —*— -

2000

1500

Time (seconds)

1000

500

0 . . o
1 10

Figure 8: Comparison of Timing Results on Lomax and Chapman

Table 1: Measure of computational intensity for LIS driver at 1/4° (ms/gridcell/day)

Number of CLM NOAH
Processors Timestep (minutes)

30 30

Lomax 1 3.02 1.89
4 1.08 0.64

8 0.78 0.46

16 0.65 0.36

32 0.55 0.32

64 0.52 0.32

Chapman 1 2.08 1.3
4 0.78 0.47

8 0.49 0.35

16 0.45 0.33

32 0.46 0.32

64 0.45 0.34

15

Code Improvement Report for Milestone F

Table 2: Memory Usage for various LIS driver runs

CLM NOAH
LDAS 1/4° (Milestone E) 3.5GB 14GB
LIS driver 1/4° (Milestone F) 0.95 GB 0.50 GB

5.2 Results at 5km

The computational performance results of the improved code at Skm resolution is
presented in this section.

5.2.1 Execution Times and Scaling

5km land surface model simulations were conducted using both the CLM and NOAH
models on Lomax. Figure[J| presents the scaling curves for both these models at 5km.
The sequential executions of these models for a day’s simulation require approximately
18 and 12 hours for CLM and NOAH, respectively. By taking advantage of the
parallelization scheme, they require approximately 3 and 2 hours, respectively. It can
be seen that the scaling behavior at 5km is similar to that observed at 1/4°.

Table |3 lists the computational intensity values for the 5km runs, for a varying
the number of processors. These normalized values are close to those calculated for
the 1/4°. The target of 1ms/gridcell/day is achieved by using 8 processors, and the
performance is further improved by increasing the number of processors.

Table 3: Measure of computational intensity for LIS driver at 5km (ms/gridcell/day)

Number of CLM NOAH
Processors Timestep (minutes)

30 30

Lomax 1 2.96 1.95
0.95 0.48

16 0.68 0.39

32 0.64 0.34

64 0.57 0.32

128 0.51 0.30

16

Code Improvement Report for Milestone F

70000 . ———— . —————]

l NOAH-P/2 Scaling

- - caling =~~~ _]
60000 = ™\ CLM—P/2 Scaling - - - -

50000

40000

30000

Time (seconds)

20000

10000

Figure 9: Timing Results on Lomax at bkm

5.2.2 Memory and Disk Storage

The memory required for 5km simulations significantly increases at 5km. CLM execu-
tion at bkm requires approximately 27GB and NOAH requires approximately 12GB.
This is consistent with our linear extrapolation from 1/4°.

The output files generated by the bkm run was approximately 1.4 GB, every 3
hours. This is also consistent with our estimate using the 1/4° run, which produces
output sizes of approximately 54MB, every 3 hours. For CLM, the output sizes are
approximately 71 MB and 1.7GB, for 1/4° and 5km, respectively.

6 Final Remarks

The scaling results presented for both 1/4° and 5km domain shows the computational
improvements in using the parallelization scheme. It can also be noted that the
computational intensity values are significantly less than the target 1ms/gridcell /day
and are close to the target 0.4ms/gridcell /day, when the simulations need to be carried
out at lkm.

Our memory profiling results show the improvements we made by redesigning the
drivers and the land surface models. However, our 5km runs still require consider-
able memory that limits us currently to a shared memory architecture that provides
adequate memory. In order to port our code to a limited memory architecture such

17

Code Improvement Report for Milestone F

as a Linux cluster, we need to redesign our data hosting and IO so that the IO of
global files and output can be handled in chunks. The next code improvement will
focus on the redesign of IO so that LIS code can be ported to a Linux cluster. The
IO redesign will also focus on managing the huge output volume, especially at 1km.

References

[1]

F. Chen, K. Mitchell, J. Schaake, Y. Xue, H. Pan, V. Koren, Y. Duan, M. Ek, and
A. Betts. Modeling of land-surface evaporation by four schemes and comparison
with fife observations. J. Geophys. Res., 101(D3):7251-7268, 1996.

CLM. http://www.cgd.ucar.edu/tss/clm/.

G. J. Collatz, C. Grivet, J. T. Ball, and J. A. Berry. Physiological and environ-
mental regulation of stomatal conducatance: Photosynthesis and transpiration: A
model that includes a laminar boundary layer. Agric. For. Meteorol., 5:107-136,
1991.

P. G. Jarvis. The interpretation of leaf water potential and stomatal conductance
found in canopies of the field. Phil. Trans. R. Soc., B(273):593-610, 1976.

LDAS. http://ldas.gsfc.nasa.gov.
NOAH. ftp://ftp.ncep.noaa.gov/pub/gep/ldas/noahlsm/.

L. A. Richards. Capillary conduction of liquids in porous media. Physics, 1:318~
333, 1931.

E. Rogers, T. L. Black, D. G. Deaven, G. J. DiMego, Q. Zhao, M. Baldwin, N. W.
Junker, and Y. Lin. Changes to the operational "early” eta analysis/forecast

system at the national centers of environmental prediction. Wea. Forecasting,
11:391-413, 1996.

18

	Description of the Milestone
	Description of Algorithms
	Land Surface Modeling and Data Assimilation
	LIS driver
	Community Land Model (CLM)
	The Community NOAH Land Surface Model
	Code Improvements and Parallelization in LIS

	Description of the Test Case
	Description of the Computer Code Used
	Documentation of the Computer Code
	Code Repository

	Results
	Results at 1/4 domain
	Profiling Results
	Execution Times and Scaling
	Memory Usage

	Results at 5km
	Execution Times and Scaling
	Memory and Disk Storage

	Final Remarks

