Milestone J Implementation Report for the Land
Information System
Submitted under Task Agreement GSFC-CT-2
Cooperative Agreement Notice (CAN)
CAN-000ES-01
Increasing Interoperability and Performance of
Grand Challenge
Applications in the Earth, Space, Life, and
Microgravity Sciences

History:
Revision | Summary of Changes | Date
1.0 Draft for Milestone J | 09/09/03

NASA Goddard Space Flight Center,
Greenbelt, MD 20771

Milestone J - Implementation Report CONTENTS

Contents

(1 Objective| 3
2 Implementation Status| 3
3 Performance kvaluationl 4

List of Figures

(I Performance comparison of pre-ESMF 2.0 (LIS 3.0) and ESMF 2.0
(LIS-ESME2) code for 0.25 degree runs. Each case has 3 independent
runs, with the execution time shown on the y-axis. Both cases were |
evaluated with LIS running CLM2, GEOS base tforcing, 0.25 degree |
resolution, global coverage, without GDS servers. | 4

2 Performance comparison of pre-ESMF 2.0 (LIS 3.0) and ESMF 2.0
(LIS-ESME2) code for 1km runs. Both versions were tested with 64
and 128 compute nodes, with the execution time shown on the y-axis. |
Both cases were evaluated with LIS running CLM2, GEOS base forcing, |
1km resolution, global coverage, with 5 GDS servers. | 6

Milestone J - Implementation Report 1 OBJECTIVE

1 Objective

The objective of Milestone J is to implement LIS as a partially ESMF compliant grid-
ded component. The development of LIS as an ESMF gridded component will enable
all the land models in LIS to interact with other ESMF compliant systems without
having to adapt each land surface model to be ESMF compliant. The performance
impact from the adoption of ESMF code will also be evaluated.

2 Implementation Status

ESMF is an evolving framework and having to follow a dynamic developing code
posed a number of problems for adopting the code into LIS. The ESMF version 2.0
was released in July, 2004. LIS team adopted this version as the basis for Milestone
J code development.

Prior to Milestone J, LIS used an older version of ESMF, primarily the time
manager utility. The time management interfaces underwent significant changes and
revisions for ESMF2.0 and the changes were propagated back into the LIS code. LIS
team found a number of code bugs in the time management routines that still remains
unresolved. For facilitating submission of the Milestone J code and testing, LIS team
implemented their own bug fixes for the ESMF version 2.0.

ESMF version 2.0 included a virtual machine (VM) based abstraction of the paral-
lel processing environment. The original release of this code contained a few problems
that were subsequently fixed by the ESMF team. Due to the limited time available
to the LIS team, the parallel mode of operation using MPI with the use of VM was
not implemented for this prototype. Performance benchmarks at coarse resolutions
were conducted on a single processor and the global 1km benchmarks did not require
the use of MPL.

The design details of the LIS-ESMF prototype is explained in the updated In-
teroperability design document for Milestone J. This version of the code uses the
ESMF time management utilities including the use of alarms. The configuration tool
is used to eliminate the use of fortran namelists for specifying runtime parameters.
The “forcing” and the land surface models are implemented as two separate ESMF
gridded components which interact through the use of a coupler. The information
exchange between these components occurs through the use of ESMF _States and the
use of ESMF data types.

Milestone J - Implementation Report 3 PERFORMANCE EVALUATION

Timing comparison between LIS pre-ESMF 2.0 and ESMF 2.0

pre-ESMF 2.0 ESMF 2.0

Wall-clock time (sec)

Figure 1: Performance comparison of pre-ESMF 2.0 (LIS 3.0) and ESMF 2.0 (LIS-
ESMF?2) code for 0.25 degree runs. Each case has 3 independent runs, with the
execution time shown on the y-axis. Both cases were evaluated with LIS running
CLM2, GEOS base forcing, 0.25 degree resolution, global coverage, without GDS
servers.

3 Performance Evaluation

The performance impact of the ESMF 2.0 implementation on the LIS code is eval-
uated. Two representative runs were undertaken. One is the global 0.25 degree
sequential run on a single processor without using any GrADS-DODS (GDS) servers.
The other is the global 1km parallel run with multiple processors, with GDS servers.
For both runs, we used CLM2 land surface model and GEOS base forcing. This
configuration has been proved to be the worst-case scenario from past tests.

Figure 1| shows the performance comparison between pre-ESMF 2.0 (LIS 3.0) code
and the LIS code implemented with ESMF 2.0 for this Milestone. This test suite was

Milestone J - Implementation Report 3 PERFORMANCE EVALUATION

configured as sequential runs with a single CPU, 0.25-degree global simulation with
CLM2 and GEOS forcing. Each code version was tested three times independently.
For both code versions and all the runs, the execution time fluctuated between 1045
and 1074 seconds, and there are no systematic performance differences discernable
between the two versions.

Figure[2[shows the performance comparison between the two versions for the global
1km LIS runs. This test suite was configured as parallel runs with LIS’ ” pool-of-task”
job management system, on 64 and 128 processors, respectively. CLM2 model and
GEOS base forcing were used, with 5 GDS servers running in parallel to serve the
forcing and parameter data, as we did for our Milestone G runs.

For the test results shown in Figure[2] the LIS code with ESMF2.0 implementation
was slightly faster than the pre-ESMF2.0 version, for both 64 and 128-processor
runs. However, by the nature of the ”pool-of-task” job management system, large
fluctuations in the timing are common, and based on the tests for both 0.25 degree
and 1km resolutions, we would conclude that the performance impact of ESMF2.0
on LIS performance is negligible.

Milestone J - Implementation Report

3 PERFORMANCE EVALUATION

Timing comparison between LIS pre-ESMF 2.0 and ESMF 2.0

600
Py & — @ pre-ESMF2.0
500 |- Sl A—k ESMF2.0
= -
= 40’0— “"""--.
E
L} aalt
g *
2 3001
2
=
J
~
§ 200 -
100+
0 | |
64 128

Number of compute nodes

Figure 2: Performance comparison of pre-ESMF 2.0 (LIS 3.0) and ESMF 2.0 (LIS-
ESMF2) code for 1km runs. Both versions were tested with 64 and 128 compute
nodes, with the execution time shown on the y-axis. Both cases were evaluated with
LIS running CLM2, GEOS base forcing, 1km resolution, global coverage, with 5 GDS

Servers.

	Objective
	Implementation Status
	Performance Evaluation

