1. Abstract

- Land surface and hydrology models use physical soil and meteorological variables to determine soil moisture.
- Soil moisture data is used for agriculture growing seasons and weather predictions.
- Abundant soil data are widely available for the U.S., but are inconsistent and sparse in regions such as East Africa.
- Insufficient amounts of soil data in East Africa previously made soil moisture modeling difficult and may have resulted in inaccurate results.

This study:
- We compare different land model experiment results between the original soil parameter standards (e.g., STATSGO/FAO) versus the latest high resolution soil parameter datasets (e.g., ISRIC).
- Information from this study may ultimately help those living in drought regions.

2. Background

Soil moisture (SM) - Volume of water in soil pore spaces per total soil volume; varies from surface to root zone.

- Soil parameters that affect soil moisture:
 - Soil type
 - Precipitation
 - Soil porosity
 - Soil wilting point

- Soil porosity – percent of void space that can hold water or air
- Wilting point – the soil moisture percent at which plants cannot extract water from pores

3. Data & Methods

Soil Datasets
- STATSGO/FAO: Global coverage with 50 km spatial resolution, US coverage with 1 km resolution
- ISRIC (International Soil Reference and Information Centre): Global coverage with 250m spatial resolution, Soil textures divided into clay, silt, and sand percentages
- USCRN: In situ SM measurements at US points

Soil Data
- Texture
- Porosity
- Wilting point (Noah MP)
- Rainfall
- Evapotranspiration

Global soil moisture conditions

Computer software used: QGIS, gnuplot, GrADS

4. East Africa Results

- Model results: case studies
 - Distinct differences in soil type (note: clay, clay loam)
 - Similar soil distribution with difference textures
 - FAO has a standard porosity value per soil type
 - ISRIC calculates porosity based on clay, silt, sand %
 - Modeled soil moisture show different results between FAO and ISRIC data
 - Top soil layer (5 cm) fluctuates more than root zone moisture (~1 m)
 - ISRIC texture, porosity & wilting point were changed to see the affects parameters have on the model

5. Southwest U.S. Results

- Overall modeled SM for ISRIC and FAO data have similar shaped curves, however differences in SM can vary up to 10% (vol SM)
- US points with in situ SM data often fall in between the modeled STATSGO and ISRIC datasets; except when observed SM is below 10%

Differences in soil textures between FAO and ISRIC data is due:
- FAO is a harmonized global soil map made of many difference soil surveys. ISRIC uses in situ measurements and extrapolated soil data through systematic “machine learning”

6. Discussion & Conclusions

- Differences in soil textures between FAO and ISRIC data is due:
 - FAO is a harmonized global soil map made of many difference soil surveys. ISRIC uses in situ measurements and extrapolated soil data through systematic “machine learning”

- Final thoughts: There are large differences between the two model outputs. ISRIC appears to follow physical observations more closely than STATSGO/FAO

Acknowledgements

Funding for this project was made possible through NASA’s contract with the ACES program at the University of Virginia. Thank you very much to these institutions for funding this internship opportunity.

Thank you very much to my mentors Kristi and Sujay for placing me into this internship program and working with me over the past several weeks. This internship has been a tremendous learning experience that will guide me down future career paths.